Cooperative Agreement No. DE-FC26-00NT40770 # Southern Fine Particulate Monitoring Project # **Objectives** - Augment existing particulate measurements at an established urban southeastern monitoring site - Make a detailed database of near-continuous measurements of fine particulate mass, composition, and key properties (including particle size distribution) - Apply the measurements to source attribution, time/transport properties of fine PM, and implications for management strategies for PM_{2.5} - Maintain high level of collaboration with other regional PM_{2.5} research programs - Focus areas: continuous composition and sizing; source attribution; carbonaceous and water content # Features of Birmingham Airshed - \rightarrow Nonattainment for O₃, PM_{2.5} - Southeastern climate - high "regional" PM_{2.5} relative to source - Ridge/valley topology and meteorology - local transport, mixing patterns - Fewer major upwind regional sources - directional signatures possible - Distinctive local source mix - mobile, metallurgical, vegetative # Birmingham PM Composition # Birmingham PM Composition # Birmingham PM Knowledge Gaps - Carbon PM: nature, sources, quantity - OC uncertainty - Coarse PM: nature, sources, distribution - poor mass balance, spatial inhomogeneity - Particle-bound water effects - Main local, regional sources of PM # Coarse PM Issues # Project Approach - Establish Collaboration With Existing Programs Using North Birmingham Site (Jefferson County, SEARCH) - Assemble Instrument Package for Continuous Monitoring of Ambient Fine Particulate Mass, Composition, and Key Properties (Including Particle Size Distribution) - Use Site as a Test Bed for Particulate Measurement Technique Development, Evaluation During Intensive Tests - Apply increased predictive strength to local and mid-range source attribution models (PMF variants) - Apply air quality modeling to time/transport properties of fine PM, and implications for management strategies for PM_{2.5} # **Existing Samplers at Site** #### → PM Mass - → FRM (24 Hour) : PM_{2.5} - → TEOM (Continuous) : PM_{2.5}, PM₁₀ #### PM Chemistry - → PM_{2.5} (24 Hour) : SO₄=,NH₄+,NO₃-, OC/EC, trace elements - → PM_{coarse} (24 Hour) : SO₄=,NH₄+,NO₃-, trace elements - → PM_{2.5} (Continuous) : OC/EC (Absorption) # **Existing Samplers at Site** - → Gases - + O_3 - NO, NO₂, NO₂, SO₂, CO - Surface Meteorological Data - Wind Direction, Wind Speed, Temperature, Relative Humidity, Barometric Pressure, Precipitation # Planned New Samplers At Site - → PM Mass - → TEOM (Continuous) : PM_{coarse} - Light Scattering : nephelometer - → PM Chemistry - ♦ PM_{2.5} (24 h integrated): EPA Speciation Site - → PM_{2.5} (Continuous): SO₄=,NH₄+,NO₃-, - → PM Sizing - Aerodynamic Particle Sizer-TSI - Scanning Mobility Particle Sizer-TSI #### PM Source Attribution Studies - Positive Matrix Factorization (PMF) and extensions: - Complete 24 hr samples, extend with 2000 data - Extend model with Met variables, Coarse PM - Incorporate continuous mass, met, size, composition data when available into treatment - Separate treatment of local, regional PM sources - Back trajectory, Potential Source Contribution Function (PSCF) analysis # PM Method Development Studies - Carbon PM: further time differentiation of "OC" - sensitivity to alternate thermal cycles - Can low temperature (<300C) volatilization mass loss tests determine "OC"/ Carbon mass ratio for local sources? - Particle-bound water effects - TDMA during intensives - Fixed vs. ambient RH for PSD suitability for PSD as source tracer # Schedule / Milestones | | Fall 2000 | | | Winter
2001 | | | Spring 2001 | | | Summer
2001 | | | Fall 2001 | | | Winter
2002 | | | Spring 2002 | | | Summer
2002 | | | |-----------------------------|-----------|---|---|----------------|---|---|-------------|---|---|----------------|---|---|-----------|---|---|----------------|---|---|-------------|---|---|----------------|---|---| | | 0 | N | D | J | F | M | A | M | J | J | A | S | 0 | N | D | J | F | M | A | M | J | J | A | S | | Install New | Instruments | PM Monitoring | Intensive | Measurements | Method | Development/ Testing | Data Analysis / | Modeling | Progress Report (QTR) | | | | Δ | | | Δ | | | Δ | | | Δ | | | Δ | | | Δ | | | Δ | | | | Final Report | Δ |